A A7001

		Total Pages: 3	
Reg	No.:	Name:	
		APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2017	
		Course Code: MA101	
		Course Name: CALCULUS	
Max	x. Ma	Duration:	3 Hours
		PART A	Morks
1	a)	Answer all questions, each carries5 marks.	Marks (2)
		Test the convergence of the series $\sum_{k=1}^{\infty} \frac{1}{\sqrt[3]{2k-1}}$.	
	b)	Find the radius of convergence of $\sum_{n=1}^{\infty} \frac{x^n}{2n+3}$.	(3)
2	a)	Find the Slope of the surface $z = xe^{-y} + 5y$ in the y-direction at the point (4,0).	(2)
	b)	Find the derivative of $z = \sqrt{1 + x - 2xy^4}$ with respect to t along the path $x = \log t$, $y = 2t$.	(3)
3	a)	Find the directional derivative of $f = x^2y - yz^3 + z$ at $(-1, 2, 0)$ in the direction of $a = 2i + j + 2k$.	(2)
	b)	Find the unit tangent vector and unit normal vector to $r(t) = 4\cos ti + 4\sin tj + tk$	(3)
4	a)	at $t = \frac{\pi}{2}$. Evaluate $\int_{0}^{\log 3 - \log 2} e^{x+2y} dy dx$.	(2)
	b)	Evaluate $\iint_R xy dA$, where R is the region bounded by the curves $y = x^2$ and	(3)
5	(a)	$x = y^2.$ $x = y^2.$	(2)
3	(a)	Find the divergence and curl of the vector $F(x, y, z) = yzi + xy^2j + yz^2k$.	(2)
	(b)	Evaluate $\int_C (3x^2 + y^2) dx + 2xy dy$ along the circular arc C given by	(3)
		$x = \cos t, y = \sin t$ for $0 \le t \le \frac{\pi}{2}$.	
6	(a)	Use line integral to evaluate the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.	(2)
	(b)	Evaluate $\int_C (x^2 - 3y)dx + 3xdy$, where C is the circle $x^2 + y^2 = 4$.	(3)
		PART B	
		Module 1	
7		Answer any two questions, each carries 5 marks. $\stackrel{\sim}{\sim} n$	(5)
		Test the convergence or divergence of the series $\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2}$.	ζ- /

A	A7001	
8	Test the absolute convergence of $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{(2k)!}{(3k-2)!}$.	(5)
9	Find the Taylor series for $\frac{1}{1+x}$ at $x=2$.	(5)
	Module 1I	
10	Answer any two questions, each carries 5 marks. Find the local linear approximation L to $f(x, y) = \log(xy)$ at P(1,2) and compare the error in approximating f by L at Q(1.01, 2.01) with the distance between P and Q.	(5)
11	Let $w = 4x^2 + 4y^2 + z^2$, $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$. Find	(5)
	$\frac{\partial w}{\partial \rho}$, $\frac{\partial w}{\partial \phi}$ and $\frac{\partial w}{\partial \theta}$.	
12	Locate all relative extrema and saddle points of $f(x, y) = 4xy - x^4 - y^4$.	(5)
	Module 1II	
12	Answer any two questions, each carries 5 marks.	(5)
13	Find the equation of the tangent plane and parametric equation for the normal line to the surface $x^2 + y^2 + z^2 = 25$ at the point $(3,0,4)$.	(5)
14	A particle is moving along the curve $r(t) = (t^3 - 2t)i + (t^2 - 4)j$ where t denotes the time. Find the scalar tangential and normal components of acceleration at $t = 1$. Also find the vector tangential and normal components of acceleration at $t = 1$.	(5)
15	The graphs of $r_1(t) = t^2i + tj + 3t^3k$ and $r_2(t) = (t-1)i + \frac{1}{4}t^2j + (5-t)k$ are	(5)
	intersect at the point $P(1,1,3)$. Find, to the nearest degree, the acute angle between the tangent lines to the graphs of $r_1(t) \& r_2(t)$ at the point $P(1,1,3)$. Module 1V	
16	Answer any two questions, each carries marks.	(5)
10	Change the order of integration and evaluate $\int_{0}^{\infty} \int_{4x}^{0} e^{-y^2} dy dx$.	(3)
17	Use triple integral to find the volume bounded by the cylinder $x^2 + y^2 = 9$ and	(5)
18	between the planes $z = 1$ and $x + z = 5$.	(5)
10	Find the area of the region enclosed between the parabola $y = \frac{x^2}{2}$ and the line	(3)
	y = 2x.	
	Module V	
19	Answer any three questions, each carries marks. Determine whether $F(x, y) = (\cos y + y\cos y)i + (\sin y - y\sin y)i$ is a	(5)

 $F(x, y) = (\cos y + y \cos x)i + (\sin x - x \sin y)j$ (5) conservative vector field. If so find the potential function for it.

Show that the integral $\int_{(1,1)}^{(3,3)} (e^x \log y - \frac{e^y}{x}) dx + (\frac{e^x}{y} - e^y \log x) dy$, where x and y20 (5)

are positive is independent of the path and find its value.

21 Find the work done by the force field F(x, y, z) = xyi + yzj + xzk on a particle (5) that moves along the curve $C: r(t) = ti + t^2 j + t^3 k (0 \le t \le 1)$.

A	A7001

- Let r = xi + yj + zk and r = ||r||, let f be a differentiable function of one variable, then show that $\nabla f(r) = \frac{f'(r)}{r}r$. (5)
- Find $\nabla \cdot (\nabla \times F)$ and $\nabla \times (\nabla \times F)$ where $F(x, y, z) = e^{xz}i + 4xe^{y}j e^{yz}k$. (5)

Module VI

Answer any three questions, each carries5 marks.

- Use Green's Theorem to evaluate $\int_{C} \log(1+y)dx \frac{xy}{(1+y)}dy$, where C is the triangle with vertices (0,0), (2,0) and (0,4).
- Evaluate the surface integral $\iint_{\sigma} xzds$, where σ is the part of the plane x + y + z = 1 (5) that lies in the first octant.
- Using Stoke's Theoremevaluate $\int_C F \cdot dr$ where $F(x, y, z) = xzi + 4x^2y^2j + yxk$, C (5) is the rectangle $0 \le x \le 1, 0 \le y \le 3$ in the plane z = y.
- Using Divergence Theorem evaluate $\iint_{\sigma} \overline{F} \cdot n \, ds$ where (5) $F(x, y, z) = x^3 i + y^3 j + z^3 k$, σ is the surface of the cylindrical solid bounded by $x^2 + y^2 = 4$, z = 0 and z = 4.
- Determine whether the vector fields are free of sources and sinks. If it is not, locate them
 - (i) $(y+z)i xz^3j + x^2 \sin yk$ (ii) $xyi 2xyj + y^2k$